
Resource Allocation with Service Affinity in
Large-Scale Cloud Environments

Zuzhi Chen∗, Fuxin Jiang∗, Binbin Chen∗, Yu Li∗, Yunkai Zhang†, Chao Huang∗, Rui Yang∗,
Fan Jiang∗, Jianjun Chen∗, Wu Xiang∗, Guozhu Cheng∗, Rui Shi∗, Ning Ma‡, Wei Zhang§, Tieying Zhang∗B

∗ByteDance Inc. †University of California, Berkeley
‡Xi’an Jiaotong University §South China University of Technology

∗{chenzuzhi, jiangfuxin, chenbinbin.1996, liyu.xjtu1998, huangchao.thss15, yangrui.emma, jiangfan.2017,
jianjun.chen, xiangwu, chengguozhu, shirui, tieying.zhang}@bytedance.com, †yunkai zhang@berkeley.edu,

‡maning@xjtu.edu.cn , §zw2020@scut.edu.cn

Abstract—Containerization has garnered substantial favor
among cloud service providers. Nevertheless, the notable network
overhead incurred between containers has prompted concerns
within the community. In cloud resource scheduling, collocating
service containers that frequently communicate to the same ma-
chine – termed “service affinity” – is instrumental in enhancing
application performance. In response to this concern, we present
a solution that harnesses service affinity and collocates containers
to enhance the overall system performance and stability. To
maximize the benefits of collocating containers, it is necessary
to calculate a new schedule that optimally and efficiently max-
imizes service affinity, especially within the expansive domain
of industry-scale cloud environments. In pursuit of this, we
leverage the skewness property of affinity and machine learning
to fuse solver-based algorithms, thereby assuring both quality and
efficiency for problems at scale. Our methodology encompasses
the partitioning of a given task into discrete subproblems, with
a keen focus on resolving the most critical ones. Via a graph
neural network classifier, we assign each subproblem to be solved
independently using methods based on off-the-shelf solvers in
our algorithm pool – namely, MIP-based, or column generation.
This strategic approach enables the efficient computation of a
schedule for a cloud cluster that fully optimizes the overall
service affinity. We further propose a heuristic algorithm to
compute executable container migration plans for practical use,
facilitating the transition to the new placement where service
affinity is well optimized. Our solution has been deployed in our
large-scale production environment, covering over a million cores
within ByteDance. Through the successful real-world production
deployment, our approach exhibits an average improvement in
end-to-end latency by 23.75% and a reduction in request error
rates by 24.09% compared to the original system.

Index Terms—resource allocation, service affinity, optimiza-
tion, solver

I. INTRODUCTION

Containerization has been widely adopted in cloud comput-
ing due to its scalability, lightweight nature, fault-isolation,
and various other advantages [1]–[4]. One of the most popular
applications of containerization is the microservice archi-
tecture, widely embraced by major Internet companies. In
microservice architecture, applications often consist of dozens
to hundreds of containerized services, each encompassing a
specific functionality. These services are highly interconnected
and engage in frequent data exchange. Despite the many

B Corresponding Author

benefits of containerization, one primary concern that troubles
many companies in containerization is the substantial network
overhead incurred due to the frequent remote calls between
services. Furthermore, a recent trend has witnessed a shift
from merely containerizing computing components to also
migrating database and storage components into containers
[5], [6]. These include NoSQL databases such as caching
components like Redis [7], [8] and message queues like Kafka
[9]. These data systems find extensive use in various data-
intensive applications, where minimizing latency is paramount
for enhancing user experiences. To mitigate this issue, one so-
lution is to optimize the scheduling of containers to maximize
the traffic that can communicate within the local machine,
which can greatly reduce network overhead and enhance
service performance.

The scheduling of containers1 to physical machines is a
fundamental resource allocation challenge in cloud computing
[10]–[12]. Consider two services in a microservice cluster,
when the collocation of their containers on the same machine
can yield benefits, we refer to these services as having an
affinity relation. Collocating containers with an affinity relation
yields multiple advantages, including the potential for network
bandwidth savings [10], [13], enhanced service performance
[10], [14], and reduced resource consumption [15], [16].

14:00 15:00 16:00 17:00 18:00 19:00
Time

9

10

11

12

13

14

15

La
te

nc
y(

m
s)

Without collocating
Collocating

(a) End-to-end latency

21:00 00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00
Time

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

Er
ro

r r
at

e

Without collocating
Collocating

(b) Stability - error rate

Fig. 1: Comparison of collocating and without collocating two
containers with a service affinity relation.

Fig. 1(a) and (b) demonstrate the benefits to service per-
formance and stability by collocating service containers with
an affinity relation on the same machine. By leveraging inter-
process communication (IPC) between collocated containers

1For convenience, in this paper, the term container is extended to refer to
any object that can be assigned to machines in the cloud, like “Container” in
Yarn and “Pod” in Kubernetes.

instead of remote procedure calls (RPC) over the network,
we can significantly reduce network latency associated with
network I/O, minimize data transfer overhead between dif-
ferent hosts, and lower request error rates related to network
congestion, packet loss, or connectivity issues.

Why Not Consolidation? We define consolidation as the
process of merging several services into one, while we define
collocation as the deployment of containers from different ser-
vices on the same machine. Network efficiency is undoubtedly
higher in consolidation, as it entirely eliminates network costs.
However, extensively adopting consolidation is often infeasible
in practice for the following reasons:

• Microservices with different programming languages and
compilation environments cannot be easily consolidated.
To merge different microservices into a single entity re-
quires substantial effort to deal with various compatibility,
environment requirements, and service level agreement
(SLA) challenges, which is very time-consuming.

• Consolidation undermines the advantages of microservice
architecture. It intensifies the coupling between services,
therefore, limiting the flexibility that containerization
could offer in disaster recovery, independent scaling and
upgrades, and other operational aspects.

On the other hand, collocation does not encounter such com-
plexities. It retains the independence of microservices and only
involves the infrastructure team to implement.

In this paper, we propose the Resource Allocation with
Service Affinity (RASA), which is a constrained optimization
problem that aims to find a container-to-machine mapping that
maximizes an objective function accurately characterizing the
overall utility of collocating containers. Section II defines this
objective function as the total gained affinity.

Despite the aforementioned benefits, collocation comes with
associated challenges that need to be addressed before imple-
menting it in practice. There are two main challenges:

• The first challenge lies in mathematically defining the
problem and accurately modeling the concept of affinity
to optimize it effectively. Prior studies [10], [11], [13]
simply treat affinity as a Boolean relation, overlooking its
full potential for optimization. In our work, we propose
a model that approximates affinity based on traffic and
represents the affinity relation as a graph. By transforming
the optimization of affinity into a scheduling problem, we
can effectively enhance the network.

• The second challenge is how to efficiently solve the
proposed scheduling problem on a large-scale cloud
environment. In the context of an optimization algo-
rithm, “solution quality” pertains to the objective value
of the solution, while “time efficiency” relates to the
algorithm’s running time. The optimization of a sched-
ule that maximizes actual benefits necessitates that the
algorithm ensures both solution quality and time effi-
ciency. However, in practical scenarios, such as those
encountered at ByteDance, where a single cluster can
comprise thousands of services and machines, efficient
heuristics often yield solutions with low overall affinity,

while sophisticated solver-based algorithms may take
days or even weeks to produce high-quality solutions.
Consequently, ensuring both quality and efficiency in
large-scale RASA problems poses a significant challenge.

In this paper, we present a comprehensive solution for
optimizing the affinity of a large-scale containerized cluster.
Our solution revolves around consistently optimizing container
placement within the given cluster. Our contributions are
summarized as follows:

• Present the problem definition and mathematical
formulation of RASA. We formally define and math-
ematically formulate the problem of optimizing service
affinity (termed RASA). This includes defining service
affinity precisely, framing it as a scheduling problem with
typical constraints, and introducing the objective function.

• Propose a novel algorithm to efficiently optimize the
schedule of industrial-scale clusters2. Our algorithm is
a three-phase approach. In the first phase, we analyze
service affinities as a graph, utilizing affinity skewness
and graph partitioning techniques to identify key subprob-
lems. This significantly reduces the scale of the problems
at hand. In the second phase, we employ graph learning
to select the appropriate solver-based approach to strike
a balance between quality and efficiency, enabling us to
address industrial-scale clusters previously deemed in-
tractable. In the final phase, we propose a migration path
algorithm to calculate the orders of container deletions
and creations necessary for transitioning the container’s
placement to align with the new mapping.

• Show advantages of our solution via extensive evalu-
ations in both experimental and production environ-
ments. In our experiments, our algorithm, on average,
not only outperforms the state-of-the-art by 17.66% in
terms of the optimization objective function, known as
total gained affinity, but also achieves this with much
less computation time. This showcases that the RASA
algorithm excels in both quality and efficiency. In our
real-world evaluations, our solution is integrated with
Kubernetes and deployed in production clusters with
over one million cores, resulting in a 23.75% reduction
in latency and a 24.09% decrease in error requests.
This demonstrates that our solution effectively enhances
service performance and cluster stability.

II. PROBLEM FORMULATION
A. The Basics

Given a cluster, assume there are N services and M
machines. Let S and M represent the sets of services and
machines, respectively. To meet the SLA (Service Level
Agreement), each service s ∈ S needs to instantiate ds
homogeneous containers in this cluster. Fig. 2(a) illustrates the
fundamental concepts of services, containers, and machines. It
is important to note that the concept of affinity discussed here
pertains to the service-to-service level rather than the service-
to-machine level. In concise terms, this concept is referred

2The source code of our RASA algorithm and the datasets are available in
the GitHub repository [17].

to as ”service affinity.” This paper focuses on service affinity
resulting from frequent data communication between services.
Fig. 2(b) illustrates the affinity relations between services.

Machine

A container of service Y

Traffic

50%

50%

A B

D D

B C

E

Y

(a) Container, service,
and machine

A

B C

D E

Service

Affinity relation

𝑤 !,# 𝑤 !,$

𝑤 #,% 𝑤 #,&
𝑤 $,&

𝑤 &,$

(b) An affinity graph
Fig. 2: Illustration of key concepts.

B. Modelling the Affinity
To describe the complex affinity topology among services,

we define affinity graphs. To quantize the utility we obtain
from service affinity, we introduce the concept of total affinity
vs. gained affinity. Affinity is an abstract concept. In this
paper, since affinity arises from frequent data communication
between services, we can intuitively use the volume of traffic
between two services to equate the affinity between them,
aiding reader comprehension.

An affinity graph is a weighted undirected graph G =
⟨V,E⟩, where each vertex of V represents a service, as
illustrated in Fig. 2(b). If (u, v) ∈ E, then the services u
and v have an affinity relation.

The weight of an edge between two services describes
the degree of their affinity. A higher weight between two
services indicates that collocating their containers results in
more benefits. The values of weights should be explicitly
designed for the corresponding scenarios. Once again, in this
paper, the affinity we focus on arises from frequent data
communication between services. Therefore, in our real-world
experiments, we have a metrics monitoring system to track
the volume of traffic between any two services within a given
cluster, and we utilize this volume of traffic as the weight of
the edge between the services.

We call the total weight of an affinity graph G as the total
affinity. For simplicity, we normalize the total affinity to 1.0.
As a comparison, we quantize the realized utility from a given
mapping of containers to machines as the gained affinity. As
a concrete example, in this paper, since the affinity we consider
is defined to encourage frequent data communication among
services, utility is the amount of traffic that can be localized
on each machine. In our case, we consider the gained affinity
as the maximum amount of traffic that can be shared within
the same machine under a traffic load balancing [18]. Here,
we present its formal definition.

Definition 1 (The Gained Affinity): Consider a machine
m ∈ M. The affinity between services s and s′ is ws,s′ and
the number of containers that the two services scheduled on
machine m is xs,m and xs′,m respectively, then the gained
affinity of services s and s′ on machine m is

as,s′,m = ws,s′ ·min

{
xs,m

ds
,
xs′,m

ds′

}
. (1)

The overall gained affinity is the sum of all as,s′,m, ∀
(
s, s′

)
∈

E and m ∈ M, where M is the set of all machines.

The gained affinity between service s and s′ is denoted as∑
m∈N as,s′,m, which signifies the maximum ratio of traffic

between s and s′ that can be transferred within the same
machine. For instance, in Fig. 2(a), consider s as Service A and
s′ as Service B. The gained affinity between Service A and B is
50%, indicating that up to 50% of the traffic can be transferred
within the same machine (marked with a red dashed line).
We refer to this as localized traffic. The more traffic between
Service A and Service B that is localized, the more requests
can contribute to reducing latency and error rates between
these two services. To optimize service affinity, it is natural to
consider the overall gained affinity as the objective function for
optimization since it quantifies the quantity of actual benefits.

In practice, there is flexibility to finetune affinity for better
optimization. For instance, the cluster manager can set up
multiple priority levels and ask each microservice developer to
specify the priority of network performance for their services.
If the priority is high, then we can assign a higher weight to
the traffic as the affinity of their services. Otherwise, we assign
a lower weight to the traffic as the affinity of their services
towards other services.

C. Formulation of RASA
RASA is an optimization problem involving the scheduling

of containers to machines in order to maximize a chosen utility
function while satisfying various constraints. Let x be a matrix
of size N × M , where xs,m denotes the number of service
s’s containers assigned to machine m. The RASA problem
is to maximize the utility via optimizing x (Notations are
summarized in Tab. I):

max.
∑

(s,s′)∈E

∑
g∈F

as,s′,g (2)

s.t.
∑

m∈M
xs,m = ds, ∀s ∈ S (3)∑

s∈S
xs,m ·RS

r,s ≤ RM
r,m, ∀r ∈ R,m ∈ M (4)∑

s∈Ak

xs,m ≤ hk, ∀Ak ∈ A,m ∈ M (5)

bs,m · ds ≥ xs,m, ∀s ∈ S,m ∈ M (6)

ws,s′ ·
xs,m

ds
≥ as,s′,g, ∀

(
s, s′

)
∈ E,m ∈ M (7)

ws,s′ ·
xs′,m

ds′
≥ as,s′,g, ∀

(
s, s′

)
∈ E,m ∈ M (8)

xs,m ∈ N, ∀s ∈ S,m ∈ M. (9)

Here, {a, x} are the decision variables, and{
r,RS , RM , b, d, h, w

}
are the given parameters. Equation

(9) restricts x to be non-negative integers.
Optimization Objective. To maximize the actual benefits
obtained from collocating containers, we will use the overall
gained affinity, defined in Definition 1, as the optimization
objective function, as it quantifies the utility from collocation.
Constraints. A container can only be placed on a machine if it
satisfies various scheduling constraints. In practical scenarios,
we consider the following constraints:

Cluster

…

Collecting Controller Decision Making

RASA algorithm
Service Partition Algorithm Selection

Scheduling
Algorithm Pool

Migration
Path

Column
Generation

MIP-based

[…]

1.
Collect
Data

4.
Execute
Reallocation

3.
Get new
mapping and
migration path

2.
Feed input
to the
algorithm

Data
Collector

subproblemsAffinity graph GCN classifier

Workflow
Controlling
CronJob

Fig. 3: Workflow of the entire system.
TABLE I: Summary of notations

Notation Description
S Set of all services, where N = |S|
M Set of all machines, where M = |M|
R Set of all resource types
A Set of anti-affinity sets

xs,m Number of containers service s places on machine m
ds Number of containers for service s
RS

r,s Requested type r resource of each container for service s

RM
r,m Total type r resource of machine m

bs,m bs,m = 1 if machine m can host containers of service s;
0 otherwise

hk The maximum number of containers of anti-affinity Ak ∈
A that a single machine can host

ws,s′ Weight of edge
(
s, s′

)
in affinity graph

as,s′,g Gained affinity of s and s′ on machine group g

• SLA constraints concern the need to create a sufficient
number of service instances (i.e., ds) for each service s to
adhere to the service level agreements (SLAs). The SLA
constraint corresponds to (3) in the above formulation,
where ds is a constant predefined by users.

• Resource constraints require that if we want to place a
container on a machine, then the requested resources of
the container must not exceed the machine’s available
resources. In practical applications, multiple resource
types need to be considered, including CPU, memory,
network, and disk. We use R to represent the list of
resource types. For r ∈ R, we use RS

r,s to denote the
requested r-th resource of the container for service s
and RM

r,m to denote the total r-th resource capacity of
machine m. The resource constraints correspond to (4)
in the formulation, which prevents the total requested
resources of all containers hosted on each machine from
exceeding the total available resources of that machine.

• Anti-affinity constraints state that given a set of services
Ak ∈ A, for any machine, the number of containers from
the service set Ak should not exceed a certain predefined
threshold, denoted as hk. Anti-affinity constraints prevent
too many containers with a certain feature from being
concentrated on a single machine. These constraints are
often designed for the purposes of disaster control, fault
tolerance, isolation, and security. Note that if Ak consists
of only one service s, the constraints prevent service s
from placing too many containers on one machine. This
is often referred to as service-to-machine anti-affinity. We
use the set A to represent all anti-affinity sets, and the
anti-affinity constraints are expressed by (5).

• Schedulable constraints determine whether the containers
of a service s can be hosted by a machine m. For a

given cluster, we use a binary matrix bN×M to represent
the schedulable relations, i.e., the machine m can host the
container of service s if and only if bs,m = 1. Schedulable
constraints are commonly related to compatibility issues
in practical applications. For example, if machine m
does not support the IPv4 network stack, but the service
s relies on the IPv4 protocol for communication, the
deployment of the container for that service is not allowed
on that machine, and we will set bs,m = 0. We abstract
all these compatibility requirements as schedulable con-
straints and formulate them as (6).

III. SYSTEM OVERVIEW
A. System Design

In this section, we provide an overview of our system, which
comprises three primary components, as illustrated in Fig. 3:

• Data Collector. For each cluster, a data collection pro-
gram gathers information at a given moment. This in-
cludes the service list, machine list, current container
deployments, and traffic metrics. This data forms the
cluster state, serving as input for our RASA algorithm.

• Workflow Controlling Periodic Task (CronJob). The Cron-
Job is responsible for orchestrating the workflow of the
entire system. It triggers data collection and the RASA
algorithm, and manages container reallocation operations.

• RASA algorithm. Our algorithm, referred to as the RASA
algorithm, plays a central role. It determines the new
mapping of containers to machines to maximize service
affinity and computes the necessary container migrations
to transition to the new cluster state.

The workflow for fully optimizing the cluster is as follows:
• Firstly, the CronJob triggers the data collection module of

the cluster, obtaining a cluster state that includes service
information, machine details, and traffic data.

• Second, the CronJob triggers the decision-making pro-
gram and feeds the cluster state to the RASA algorithm.

• Third, the RASA algorithm calculates a new container-
to-machine mapping and migration plan, which includes
instructions for deleting and creating containers to align
with the new mapping, and then returns them.

• Lastly, the CronJob reallocates the containers according
to the migration plan.

Following the aforementioned process, a full optimization of
the cluster is completed. However, in practice, the cluster’s
state may change for various reasons, such as application
updates or user modifications. After these changes, the overall
gained affinity may no longer be satisfactory. To address
this, we continuously optimize the cluster by configuring the

CronJob to run every half an hour. This approach ensures that
the overall gained affinity remains consistently high, allowing
us to maximize the benefits of collocation.
B. Trade-Offs in Other Metrics

Our approach may trade off other cluster features, like load
balancing, as we reallocate containers to optimize service
affinity. These trade-offs are inevitable in order to optimize
network performance. However, in practice, we can effectively
manage the compromises resulting from our approach.

First, the extent of side effects our approach has on the
overall cluster is not significant. As discussed in Section
IV-B2, a few services account for the majority of the cluster’s
traffic, and we focus optimization and reallocation efforts
on containers associated with these services. In practice, we
observe that in each execution, less than 5% of the total
containers are relocated. This minimal proportion of containers
has negligible impacts on the overall cluster.

Second, we have implemented extra mechanisms to prevent
extreme cases on other metrics:

• Resource utilization: The load balance is maintained by
the default scheduler of the cluster, and mild imbalance
is acceptable. Even if our approach causes highly skewed
loads on some machines, we have a rollback mechanism
that rolls back the reallocation and utilizes the default
scheduler to schedule these containers on skewed ma-
chines. Furthermore, to prevent these containers from
causing excessive imbalances again and churn, we will
tag them as unschedulable for three days.

• Churn: Churn refers to the rate of container movements.
The trade-off in churn is small for the following reasons:
i) The maximum number of moved containers is relatively
small. ii) We focus on optimizing stateless services in
the cluster, which have a negligible moving cost. iii) In
practice, the half-hourly CronJob will only dry-run if the
gained affinity does not show a significant improvement
(i.e., an improvement of over 3%) in the new schedule.
Therefore, in practice, the real execution of the realloca-
tion happens only a few times a day.

IV. RASA ALGORITHM
The RASA algorithm is the core component of our entire

solution, as it determines the mapping of containers to ma-
chines, thereby directly influencing the actual benefits we can
obtain. In this section, we will provide an overview of our
RASA algorithm and then dive into the finer details.
A. Algorithm Overview

We devised the mathematical programming formulation for
RASA in Section II-C. A common approach is to employ off-
the-shelf solvers to solve the formulation and obtain promising
results; we refer to this as the solver-based approach. How-
ever, while the solver-based approach can achieve optimal
optimization quality, it often suffers from an exponential
time complexity [19]–[22] that is unacceptable for large-scale
problems. To address this, we propose the RASA algorithm.

The RASA algorithm in Fig. 3 shows an overview of our
algorithm. We maintain a scheduling algorithm pool consisting
of two solver-based methods - namely column generation and

All services

Non-Affinity Set

Non-Master-
Affinity Set

Compatible
Service Set 1 …

Services
Set 1 …Services

Set 2

Master-Affinity
Set

Affinity Set

Compatible
Service Set 2

…Services
Set 3

Non-
Affinity
Partitioning

Master-
Affinity
Partitioning

Compatibility
Partitioning

Loss-
Minimization
Balanced
Partitioning

100
3

8
12

6 8

100
3

8
12

6 8

100

8

10

10

10

1008

100

Fig. 4: Workflow of the multi-stage service partitioning with
subproblem representations (each leaf node) and an example.

MIP-based algorithms. The first step is service partitioning,
where a multi-stage partitioning algorithm splits the input data
and produces several subproblems. To achieve better optimal-
ity, the second step is algorithm selection, where a GCN-
based classifier selects the most appropriate algorithm from
the pool for each subproblem. From here, each subproblem
is solved independently with its selected algorithm, and then,
we combine the solution of each subproblem into an overall
placement of containers. Finally, a heuristic algorithm is
employed to calculate a migration path comprising batches of
delete and create commands. This path facilitates the transition
of the current mapping to the new mapping while ensuring
compliance with SLA and resource requirements.
B. Service Partitioning

At ByteDance, each cluster comprises hundreds or even
thousands of services. Computing an optimal solution to opti-
mize the overall gained affinity of such large-scale clusters can
be time-consuming. Partitioning is a commonly used technique
to deal with this. The most prevalent way is equal-partitioning,
which divides the problem into homogeneous subproblems
[23]–[26]. However, this method is not optimal for problems
with skewed properties, where certain subproblems are more
important and require greater attention, while others are less
significant and can be ignored. To deal with this, we propose
a multi-stage service partitioning technique, where sets of
services are iteratively partitioned into more disjoint sets,
each representing a subproblem. The procedure of multi-
stage partitioning can be represented by a hierarchy tree, as
illustrated in Fig. 4. Now, we dive into the features we consider
and the algorithm we use at each stage.

1) Non-Affinity Partitioning: The first stage is partitioning
the original service set into two disjoint sets, the affinity set
and the non-affinity set. Services with no affinity relations with
other services belong to the non-affinity set. The services in
the non-affinity set can never contribute to the gained affinity,
so collocating containers of these services is not necessary.

2) Master-Affinity Partitioning: The second stage is to set
apart the non-master services from the affinity set. We define
the total affinity of a service s as T (s), where T (s) =∑

s′∈N(s) ws,s′ , where N(s) is the neighborhood of vertex
s. Without loss of generality, we assume that the services

are indexed in the order of decreasing total affinity. Given
α ∈ [0, 1], we call the top ⌊αN⌋ services with the largest
total affinity as the master services, and call its complement
as the non-master services. The master services set and the
non-master services set are disjoint. In Section V-B, we will
explain how we determine the value of ⌊αN⌋ for the master
partitioning step in our real-world deployment.

Note that the master services are only a small subset of
all services while taking up a large portion of the total
affinity in several practical cases. A power-law function often
approximates this skewed distribution of affinity.

Assumption 4.1: The total affinity of the sth service satisfies
T (s) ∝ 1

sβ
for some constant β > 1, for all s = 1, · · · , N .

Prior works provide both empirical [3], [27], [28] and
theoretical [29]–[31] evidences that Assumption 4.1 holds in
network applications, and is further confirmed by our practical
cluster data as shown in Fig. 5. With this assumption, we prove
the following lemma 3.

Lemma 1: Under Assumption 4.1 with a power of β > 1,
for any ϵ ∈ (0, 1], let γ = (β − 1)(1 − ϵ). Then the total
affinity of the last N − O

(
ln1−ϵ N

)
services is bounded by

O
(

1
lnγ N

)
.

Given any ϵ ∈ (0, 1]. If we let α = O(ln
1−ϵ N
N), Lemma

1 implies that scheduling only the top O(ln1−ϵ N) services
leads to just a small loss in the objective, which is o(1). In
other words, the set of non-master services can only contribute
minimal affinity to the gained affinity. Thus we can ignore
these services to reduce the time complexity greatly.

0 5 10 15 20 25 30 35 40
Service

0.0

0.2

0.4

A
ffi
ni
ty

Exponential(0.86)
Power-law(1.56)
Observed

Fig. 5: Fitting exponential and power law distributions to the
total affinity distribution of 40 services in a production cluster.

3) Compatibility Partitioning: The third stage is to isolate
services with different compatibility requirements, as defined
by the matrix b. A machine m is compatible with a service
s if and only if machine m can host the container of service
s. Since services with no intersecting compatible machines
can never be placed together, their containers can be sched-
uled separately with no loss in the objective. Compatibility
partitioning is, in fact, the decomposition of the compatibility
matrix b. An example is if b =

(
A 0
0 B

)
, then compatibility par-

titioning will divide the service into two disjoint service sets,
with A and B as their compatibility matrices, respectively.
This stage will partition the master services into several even
smaller disjoint service sets, without hurting optimality.

4) Loss-Minimization Balanced Partitioning: We ended up
with several service sets after the previous three stages.
However, the scale of each set could still be massive. Thus,
for each large service set Sl at this stage, we further seek a
balanced disjoint partition of the service set while minimizing

3The full proof can be found in [18].

the total affinity (weight) between different subsets. We refer
to this as loss-minimization balanced partitioning. Here, “loss-
minimization” means that the total affinity between services
from different subsets is minimized. “Balanced” means that the
number of services in different subsets is close. Specifically,
we consider a partition balanced if the number of services in
the largest subset does not exceed twice the number of services
in the smallest subset after the partitioning.

To achieve this, we propose a heuristic that partitions the
service set into balanced sets while minimizing the loss of
affinity. Given a service set Sl and its affinity graph Gl, we
follow the process below for |E| times (|E| is the edge number
of the graph Gl), generating a new partition each time:

i) Randomly sample h services from Sl.
ii) For each of the h services in the affinity graph Gl, apply

the breadth-first search algorithm.
iii) For each service s that is not among the h sampled

services, if it is firstly visited by s′ from the h services,
then in this partition, s and s′ will be placed in the same
subset. This process results in h disjoint service subsets
from Sl, forming a partition of Sl.

After the above process, we obtain |E| ways of partitioning
the service set Sl. We first filter out those not satisfying the
balanced condition among these partitions. Then, we select the
partition that minimizes the loss of affinity between different
subsets as the final partition for the service set Sl. The resulting
partition demonstrates a clear balanced feature, while the
loss-minimization aspect stems from the intuition that each
subset in a good partition contains a set of services within a
neighborhood in Gl. In large-scale industrial scenarios, this
heuristic algorithm excels due to its simplicity and paralleliz-
able nature, enabling efficient performance without significant
loss of affinities after the partitioning process.

5) Summary of Service Partitioning: To summarize, re-
ferring to Fig. 4, the services from the non-affinity set and
non-master-affinity set only contain a minimal amount of
total affinity according to the analysis in IV-B1 and IV-B2,
and are therefore deemed as trivial services. Conversely, the
services from the descendant set of the master-affinity set are
considered as crucial services, as they encompass most of
the overall affinities. Note that under Assumption 4.1, crucial
services are relatively small in scale.

To construct subproblems, we need first to ignore the trivial
services. Our method is to construct a new machine set, i.e.,
for machine m with a total resource RM

m , if a container of
trivial services s is initially hosted by machine m, then we
construct a new machine with a new total resource RM

m −RS
s .

After we construct the new machine set, for each type of
machine specification, a specific number of machines with
that specification are assigned to each crucial service set,
proportional to the ratio of requested resources by that service
set relative to the total requested resources by all crucial
service sets. Each crucial service set and its assigned machines
form a new subproblem. For trivial services, we do not need
to do any further operations. It is important to note that
our algorithm may not be able to successfully deploy all

containers in each subproblem. However, a small number of
failed deployments is considered acceptable, as they will be
managed by the default scheduler in the cluster.
C. Scheduling Algorithm Pool

After the service partitioning step, we end up with several
subproblems. Meanwhile, our scheduling algorithm pool pos-
sesses two algorithms tailored for different types of problems,
which are MIP-based algorithm and column generation algo-
rithm. For each algorithm, we briefly describe how it works,
its characteristics, and the features of its target subproblems.

1) MIP-Based Algorithm (MIP): RASA can naturally be
formulated as a mixed integer programming (MIP), as shown
in Expressions (2) - (9). The MIP-based algorithm for solving
RASA feeds its MIP formulation into an off-the-shelf mathe-
matical programming solver [32], [33] directly. Note that the
principles behind these solvers could be quite complicated and
are thus out of the scope of this paper4.

Characteristics: MIP-based algorithm guarantees an optimal
solution (within a tolerance) but has a runtime exponential
to the input size, rendering it only acceptable for small-scale
problems but impractical for industry-scale applications.

Targets: If a subproblem is relatively small in scale yet has
a significant total affinity, employing the MIP-based algorithm
is a favorable option.

2) Column Generation Algorithm (CG): To illustrate the
principles of the column generation algorithm, we introduce
the concepts of patterns and the cutting stock formulation of
RASA. A pattern p ∈ NN represents a feasible placement
of service containers on a machine, satisfying resource, anti-
affinity, and schedulable constraints. The cutting stock formu-
lation is an equivalent formulation of the MIP formulation
(Expressions (2) - (9)) of RASA. In this formulation, decision
variables determine the pattern used by each machine. Given
a pattern set Pm of machine m, which consists of feasible
patterns on machine m, let p(l) =

[
p
(l)
1 , p

(l)
2 , . . . , p

(l)
N

]
∈ Pm

be the lth pattern of machine m, and ym,l be a binary decision
variable denoting whether the container placement on machine
m follows the pattern p(l) or not.

Algorithm 1 presents the framework of the column gen-
eration algorithm5. In each iteration of the while loop,
SolveCuttingStock solves the cutting stock formula-
tion. Note that SolveCuttingStock relaxes the integer
constraints of decision variables and produces a fractional
solution y for time efficiency. Then, GenPattern solves the
formulation for generating feasible patterns and produces new
patterns P ′ for the next iteration. The algorithm repeats this
process until no more patterns with negative reduced cost are
found6, or the runtime exceeds the time-out parameter tmax

(i.e., IsTerminate). The final step is to Round y to obtain
an integral solution x.

In summary, the column generation algorithm solves RASA
by iteratively generating patterns and solving the cutting

4For more details, we refer readers to [34], [35] and [36].
5The omitted formulations of cutting stock and pattern generation can be

found in our GitHub repository [17].
6For more details, please refer to [37] and [38].

stock formulation. The pattern generation process aims to
improve currently obtained patterns and generate high-quality
patterns with a high gained service affinity. The cutting stock
formulation generates the final solution by utilizing a small set
of patterns. These techniques effectively reduce the problem
size compared to solving the original MIP formulation without
significantly compromising optimality.

Algorithm 1: Column Generation for RASA
Input : Parameters of Expressions (2) - (9):

{d,Rs, Rm, b, h, w}, tmax

Output: Scheduling decision x ∈ NN×M

begin
// Initialize patterns, let
P = {P1, . . . ,PM}

1 Pm ← diag(b1,m, . . . , bN,m), ∀m ∈M
2 while IsTerminate

(
y,P ′, tmax

)
do

// Solve the cutting stock
formulation

3 y ← SolveCuttingStock (P, d)
// Generate new patterns

4 P ′ ← GenPattern (d,Rs, Rm, b, h,P)
5 P ← P ∪ P ′

6 x← Round (y, d,Rs, Rm, b, h, w,P)
7 return x

Characteristics: The column generation algorithm can solve
large-scale MIPs and often performs efficiently in practice
[37], [39]–[41]. Thus, we consider column generation to
have a sub-optimal optimization quality and an acceptable
computation time.

Targets: For a subproblem of a medium scale with non-
negligible total affinity, the column generation algorithm is
a promising option since it strikes a good balance between
efficiency and optimality.

3) Summary of Algorithm Pool: Considering the NP-hard
nature of the RASA problem [18], the worst-case time com-
plexity for both algorithms in our pool is exponential to the
input size [18], [21]. However, in practice, these algorithms
exhibit varying levels of efficiency and solution quality for
different subproblems, depending on factors such as problem
scale and affinity structure. By considering the features of each
subproblem, assigning the most appropriate algorithm to it can
ensure that the algorithm achieves both efficiency and quality.

D. Algorithm Selection
With a set of subproblems after partitioning and the two

scheduling algorithms, the next step is to select an appropriate
algorithm for each subproblem. The algorithm selection takes
a subproblem as input and uses a graph learning model to
select the more appropriate algorithm between CG and MIP.

1) Graph Classifier: Empirically, selecting between CG
and MIP should factor in the finer graphical structure of the
subproblem. In this case, simple heuristics would fail since
it is practically infeasible to design rules that can capture all
the structural information of the input. Motivated by a surge of
interest in graph learning [42]–[45] in recent years, we propose
a classifier based on graph convolution network (GCN) to
select the appropriate algorithm.

For the subproblem k with a service set Sk ⊆ S, let
G [Sk] = ⟨Sk, Ek⟩ be the sub-graph induced by Sk in the
affinity graph G and Fk be a matrix with a size of N ×2. Let
[rs, ds] be the sth row of Fk, which represents the resource
demand and the containers number of service s. We define
Ĝk = ⟨Sk, Ek, Fk⟩ as the feature graph of subproblem k,
which is used to select an algorithm for the subproblem.

Definition 2 (Graph Classification): Given a set of fea-
ture graphs G =

{
Ĝ1, Ĝ2, . . . , ĜK

}
and their labels

{ℓ1, ℓ2, . . . , ℓK}, where ℓk ∈ L = {CG,MIP}, ∀k ∈ [K].
We need to learn a function f : G → L, so that f

(
Ĝk

)
approximates ℓk, ∀k ∈ {1, 2, . . . ,K}.

We propose to parameterize f with the following GCN
model: given subproblem’s feature graph Ĝ as input, it is first
processed by a two-layer GCN with ReLU as the activation
function. Then, graph readout is applied to get a hidden vector.
Lastly, a linear layer with the softmax function calculates the
probability of selecting each label based on the hidden vector.

To learn f , we obtain our train set by randomly sampling
1000 subproblems and their corresponding feature graphs from
four real clusters7. To label a subproblem, we attempt each
subproblem with the two candidate algorithms and choose the
one that returns better objective within one-minute time limit.
E. Migration Path

After the algorithm selection step, we have solved all
subproblems and obtained a new mapping of containers to
machines. However, transitioning to this new mapping neces-
sitates the reallocation of a portion of containers within the
cluster. Container reallocation involves two steps: deleting the
container from its original machine and then creating it on
the target machine. This reallocation process is subject to two
specific requirements:

• SLA constraints, which can be temporarily relaxed, allow
each service s to maintain at least 75% of its containers
alive during reallocation.

• Satisfying the resource constraints in Section II-C.
The first requirement restricts us from deleting all containers
at once and subsequently creating new ones. The second
requirement necessitates the deletion of some containers first
to free up resources before new ones can be created. To effec-
tively employ the RASA algorithm in practical scenarios, we
must determine the optimal sequence for deleting and creating
containers while ensuring compliance with the aforementioned
two requirements during the reallocation. This problem is
known as the migration path problem.

Algorithm 2 details the process of computing a migration
path using the original and new mappings of containers to
machines. The migration path consists of a list of command
sets containing commands to delete or create containers on
specific machines. For instance, (delete, c1,m2) refers to
delete the container c1 on machine m2.

In each iteration, the algorithm generates two command sets:
one for deleting containers (ldelete) and another for creating

7Denoted as T1 - T4, which are different from the testing datasets M1 -
M4 in Section V.

containers (lcreate). These sets are devised iteratively until the
containers match the new mapping. The choice of containers to
delete or create on each machine depends on the offline ratio
(offs) of each service s ∈ S which refers to the proportion
of containers from service s that have been deleted and not
yet recreated, relative to the total number of containers for
service s. More specifically, the SelectDelete function
on machine m, will firstly filter out all containers on machine
m that need to be migrated, then select the one with the
lowest offline ratio. Similarly, the SelectCreate function
on machine m, filters containers that meet the following
criteria: 1) they are scheduled to machine m in the new
mapping, 2) they have been deleted but not yet created, and 3)
their requested resource does not exceed the available resource
on machine m. It then selects a container whose service has the
highest offline ratio. These offline-ratio-based heuristics ensure
that SLA constraints are maintained during reallocation.

Algorithm 2: Compute a Migration Path
Input : An original mapping xcurr ∈ NN×M and a new

mapping xnew ∈ NN×M

Output: Migration paths p
begin

1 xcurr ← xorig

2 migration path← []
3 while xcurr ̸= xnew do

// Get a list of containers to
delete

4 ldelete ← []
for each m ∈M do

5 ldelete ← ldelete +[(
delete,SelectDelete (m,xcurr, xnew) ,m

)]
6 p← p+ [ldelete]

// Get a list of containers to
create

7 lcreate ← []
for each m ∈M do

8 lcreate ← lcreate +[(
create,SelectCreate (m,xcurr, xnew) ,m

)]
9 p← p+ [lcreate]

10 return p

Each set of the final migration path list contains a series of
delete or create commands, which can be executed in parallel
on different machines. However, it is important to note that the
commands in the i-th set can only be executed after completing
all the commands in the i− 1-th set.
F. Running Example

Our approach begins with service partitioning to reduce the
number of services that need to be considered in optimization.
Fig. 4 shows our four-partitioning process, where we illustrate
the properties of affinity relations in a cluster and show how
we can leverage them to reduce unnecessary computations.

Initially, we perform non-affinity partitioning to identify
services lacking affinity with other services. These services do
not need to be reallocated for collocation. For the remaining
services, we observe a common property of affinity in real-
world scenarios, which is skewness. This means that a few

services contribute significantly to the overall affinity, while
the remaining majority have minimal impact and can be
disregarded. Based on this observation, we further divide the
services into two subsets. Next, we perform compatibility
partitioning, exemplified by IPv4 and IPv6 support. If one ser-
vice requires IPv4-compatible machines and another requires
IPv6 support, they cannot be deployed on the same machine.
Attempting to collocate them is unnecessary; thus, we separate
them into two subproblems. In some cases, even after the
previous steps, a subproblem still contains a large number of
services. To address this, we introduce a final partitioning step
that partitions a service set into multiple smaller services while
minimizing the affinity between different service sets.

After partitioning, we obtain multiple subproblems. We need
to solve each subproblem independently. Two common algo-
rithms, MIP-based and column-generation, are used to solve
the formulations. These two algorithms each have their own
advantages and are suitable for different problem structures, so
we train a classifier model to select the best algorithm for each
subproblem. Comparison experiments in Section V-C validate
the effectiveness of this selection approach. The solutions of
all subproblems are combined to form the final solution, in
which some containers are moved to other machines in the
cluster. Finally, we reallocated these containers accordingly.

V. EVALUATIONS

We begin by describing the experiment setup in Section
V-A. Then, we delve into examining the effectiveness of
service partitioning and algorithm selection in Sections V-B
and V-C, respectively. Next, we provide the results of gained
affinity and running times in Sections V-D and V-E. Finally, in
Section V-F, we present the benefits of the deployed solution
in the production environment at ByteDance.

Note that from Section V-B to V-E, we evaluate the al-
gorithms designed for solving the optimization problem of
RASA, the primary criteria for comparison are the optimiza-
tion objective (total gained affinity) and algorithm running
times. Therefore, we only ran different algorithms and ablation
experiments in simulation without executing any deployments.
On the other hand, in Section V-F, to assess the overall
effectiveness of our approach, we deployed our solution in a
production environment and presented results related to end-
to-end latency and request error rate.
A. Experimental Setup

The experiment is to validate that the RASA algorithm
can efficiently compute a map of containers to machines,
improving the cluster’s overall gained affinity. We introduce
the datasets and baselines first:
Datasets. We conduct experiments on four microservice clus-
ters containing services, machines, and traffic (or affinity) data.
All these data are collected from real traces of microservice
clusters at ByteDance. Tab. II summarizes the dataset.
Baselines. We compare the following algorithms8:

• POP: An algorithm in [23] to efficiently solve gran-
ular resource allocation problems. However, since our

8We used Gurobi 9.5 [32] as the solver for all the solver-relevant algorithms.

TABLE II: Scales of Experimental Datasets
Cluster Name #Service #Container #Machine

Microservice Cluster 1 (M1) 5, 904 25, 640 977
Microservice Cluster 2 (M2) 10, 180 152, 833 5, 284
Microservice Cluster 3 (M3) 547 3, 485 96
Microservice Cluster 4 (M4) 10, 682 113, 261 4, 365

M1 M2 M3 M4
0

20

40

60

80

To
ta
l G

ai
ne
d
A
ffi
ni
ty
 (%

)

O
O
T

O
O
T

O
O
T

O
O
T

No-Partition Random-Partition KaHIP Multi-Stage-Partition

Fig. 6: Comparison of the gained affinity of different parti-
tioning algorithms under a one-minute time-out.

problem involves services with interactions, it is not
considered granular, and therefore, POP is not applicable.
Nevertheless, we include POP as a baseline method since
it represents one of the state-of-the-art approaches for
solving large-scale optimization problems using solvers.

• K8S+: An online algorithm in [14] that simulates the
Kubernetes scheduling processing - filter and score. We
use a scoring function that considers service affinity.

• APPLSCI19: An extension of the offline heuristic algo-
rithm in [46], which is based on the min-weight graph
partitioning and heuristic packing techniques.

• RASA: The full approach we proposed in Section IV.
• ORIGINAL: Original assignments from the model in

ByteDance production combine the idea of first-fit with
the K8S’s filter and score process.

B. Comparison on Service Partitioning
Different Partitioning Algorithms. To demonstrate the effec-
tiveness of the service partitioning step, we compare different
service partitioning algorithms:
• NO-PARTITION: The approach considers the entire problem

without partitioning the services.
• RANDOM-PARTITION: The approach that uniformly random

partitions the services set in the service partitioning step.
• KAHIP: The approach that adopts KaHIP [47], [48], which

is the state-of-the-art for min-weight balanced graph cut
problem, to partition the services.

• MULTI-STAGE-PARTITION: Our service partitioning algo-
rithm as described in Section IV-B, which adopts a multi-
stage service partitioning technique.

Fig. 6 shows the gained affinities under different service
partitioning methods. On average, our method outperforms
RANDOM-PARTITION and KAHIP by 52.25% and 12.69%.
For NO-PARTITION, the program succeeds only for one small-
scale cluster (M3). Our MULTI-STAGE-PARTITION outper-
forms all the other methods. Furthermore, we evaluated the
optimality loss and time overhead associated with our MULTI-
STAGE-PARTITION method. The results [18] show that the loss
is generally below 12%, and the time overhead constitutes less
than 10% of the total execution time of the RASA algorithm.
Different Master Ratio. Master affinity partitioning plays a
crucial role in reducing computation time, so it is worth further
analyzing its properties. Fig. 7 illustrate how the gained affinity
and the total affinity of master services vary with different
master ratios under the one-minute time-out constraint.

Our analysis and Lemma 1 indicate that the master ratio α
should be set to O((ln1−ϵ N)/N). In practice, we empirically
set the master ratio α = 45 · (ln0.66 N)/N . Fig. 7 also plots
the master ratios we use in our algorithm. Our chosen master
ratio is close to the optimal value for all clusters.

In general, as the master ratio increases, the total affinity of
master services quickly approaches 1.0, and the gained affinity
increases to a peak before either plateauing for small and
medium-scale clusters or decreasing for large-scale clusters.
The decrease in gained affinity is due to the limited time
frame of 1 minute for solving large-scale clusters, which is
insufficient for our algorithm to explore the search space and
obtain a good solution fully.
C. Comparison on Algorithm Selection

To demonstrate the effectiveness of the algorithm selection
step, we compare different algorithm selection settings.
• CG: Our approach except that the graph classifier is replaced

by labeling every subproblem with CG.
• MIP: Our approach except that the graph classifier is

replaced by labeling every subproblem with MIP.
• HEURISTIC: An empirical heuristic that calculates the av-

erage container number of all services and the average
machine number of all machine types. If the former is
greater than the latter, then we select CG. Otherwise, we
select MIP.

• MLP-BASED: The approach that takes the mean value of
each feature for all services and then processes it by a
multi-layer perception (MLP) [49]. This method completely
ignores the topology of the affinity graph.

• GCN-BASED: The approach described in Section IV-D
which adopts the GCN-based algorithm selection.

Fig. 8 shows the gained affinities under different algorithm
selection methods. Except GCN-BASED, no method can
achieve the best gained affinity across all clusters. We find
that exclusively selecting either CG or MIP does not yield the
best optimization results, as CG outperforms MIP in certain
clusters and less effectively in others. HEURISTIC is derived
from our practical experience, which works well for clusters
except for M2 and M4. The reason is that M2 and M4 are
large clusters with complex features in graph structures and
feature matrices, and the rule is not enough to capture all
these features. Similarly, the MLP-BASED approach, which
ignores the affinity topology compared to GCN-BASED and
fails to identify the best choice for clusters like M1 and M3.
To summarize, GCN-BASED is a general algorithm selection
approach that works well across different datasets.
D. Optimization Quality Results

To get a fair comparison of the optimization quality, we
compare POP, APPLSCI19, K8S+ and RASA under the exact
time-out requirements. Considering the service level objective
(SLO) in practical scenarios, we set the time-out to one minute.
If an algorithm cannot produce a result in one minute, we will
mark it as OOT (Out of Time).

Fig. 9 illustrates the gained affinity of different algorithms.
For the Microservice dataset, RASA improves the gained
affinity by more than 13.83× compared to the ORIGINAL

schedule on average. RASA also outperforms POP, K8S+
and APPLSCI19 by 54.91%, 54.69% and 17.66% on average,
respectively. In summary, RASA achieves the best optimiza-
tion quality for all clusters under a one-minute time-out.

POP fails due to its random partitioning, which causes sig-
nificant loss. ORIGINAL and K8S+ also perform suboptimally
since they are both online heuristic algorithms with limited
ability to optimize schedules. As for APPLSCI19, though the
graph partitioning performs well, the heuristic packing after
each partitioning frequently fails since the original algorithm
can only deal with one machine size. The heuristic packing
did not consider problems with multiple machine types.

E. Efficiency Results
We now investigate the runtime of different algorithms

from two aspects: (1) the minimum possible runtime, and
(2) the solution quality under the same time-out constraint.
For reference, from our practical experience, an algorithm
that produces a schedule with a runtime (consider the 95th
percentile or p95) under 60 seconds is practically valuable.
Those with a runtime under 5 minutes could cause minor
errors when scheduling due to the nonnegligible changes in
the cluster snapshot, while those with a runtime over 5 minutes
are considered impractical.

For RASA and POP, the algorithm iteratively refines its
solution until it converges to optimality. If we halt the program
in the middle of execution, the algorithm can still return the
current best result. Thus, by setting a time-out parameter,
we can control the max runtime of RASA and POP. This
allows us to plot how the optimization quality changes over
runtime for RASA and POP. In contrast, manipulating the
max runtime is rather difficult for APPLSCI19 and K8S+ since
these two algorithms do not produce any feasible solutions
unless the algorithm fully executes.

Fig. 10 reveals the relations between the optimization qual-
ity and the runtime for RASA and POP. A point closer to
the top-left is desired, meaning its quality is superior, and
runtime is shorter. As shown, RASA outperforms the other
algorithms in terms of both quality and efficiency. Note that the
improvement of solution over time is not significant for both
RASA and POP, but for completely opposite reasons. For
RASA, partitioning is able to separate out small subproblems
that have high affinity. Employing a minimum time limit can
already achieve satisfactory results, and increasing the time
limit further does not yield significant improvements. How-
ever, for POP, the subproblems after partitioning remain large
in scale, resulting in inferior solutions compared to RASA.
Increasing the time limit leads to only marginal improvements
since the search space is too large.

F. Performance Improvements in Production
The solution described in Section III has been deployed in

production at ByteDance for several critical clusters, covering
resources totaling more than a million CPU cores. In this
section, we present the results observed from our deployed
solution in production environments. In the production setting,
we adopted an altered RPC framework that allows collocated

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Given master ratio

0

20

40

60

80

100

Va
lu

e
(%

)

(a) M1

0.00 0.05 0.10 0.15 0.20 0.25

Given master ratio

0

20

40

60

80

100

Va
lu

e
(%

)

(b) M2

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Given master ratio

0

20

40

60

80

100

Va
lu

e
(%

)

(c) M3

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

Given master ratio

0

20

40

60

80

100

Va
lu

e
(%

)

(d) M4

Gained Affinity Master Service Affinity Our Chosen Master Ratio

Fig. 7: Under one-minute time-out constraint, the gained affinity and the total affinity of master services under different given
master ratios, and the value of our chosen master ratios.

M1 M2 M3 M4
0

20

40

60

80

To
ta

l G
ai

ne
d

A
ffi

ni
ty

 (%
)

CG MIP Heuristic MLP-Based GCN-Based

Fig. 8: Comparison of the gained affinity of different algorithm
selections under a one-minute time-out.

M1 M2 M3 M4
0

20

40

60

80

To
ta
l G

ai
ne
d
A
ffi
ni
ty
 (%

)

O
O
T

O
O
T

O
O
T

Original POP K8s+ ApplSci19 RASA

Fig. 9: Gained affinity comparisons of different algorithms for
RASA under a one-minute time-out.
containers to communicate through inter-process communica-
tion (IPC) instead of using the network.

To validate the effectiveness of improving service perfor-
mance and stability through the deployment of RASA, we
present the results of end-to-end latency and request error rate
(all metrics are normalized with a maximum value of 1.0)
for both the WITH RASA and WITHOUT RASA cases. WITH
RASA refers to containers whose placement is optimized with
the RASA algorithm, where more of them are collocated. In
contrast, WITHOUT RASA refers to the containers without
optimizing service affinity, which is essentially the ORIGINAL
algorithm that we described in Section V-A. To show the
optimization upper bound that could be achieved, we also
present results of ONLY COLLOCATED. For a service pair,
certain requests between them are routed between collocated
containers on the same machine. ONLY COLLOCATED solely
considers the latency and error rate of these collocated con-
tainers, providing a close approximation to the scenario where
all containers are collocated on a single machine.

Fig. 11 and 12 demonstrate the improvements in end-to-
end latency and request error rate achieved by the RASA
algorithm for four critical business service pairs in production.
Each subplot represents the average metrics of all containers
of the service pair with the RASA algorithm optimizing (solid
line) and without the RASA algorithm optimizing (blue dashed
line) its placement. The relative improvements in latency range
from 16.77% to 72.16%, and the relative improvements in
error rate range from 13.27% to 64.42%. These improvements
are due to the RASA algorithm enabling more containers to be
collocated, allowing more requests to benefit from collocation,

and resulting in improved average latency and error rates.
Fig. 13 shows the improvements of all services that we

have currently optimized in a cluster. We utilize a weighted
metric encompassing all the services considered in our RASA
algorithm. The weight assigned to each service pair in the
metric is based on its queries per second (QPS) relative to the
total QPS of all services. The WITH RASA weighted latency
and error rate demonstrates a significant 23.75% improvement
and a 24.09% reduction compared to the WITHOUT RASA,
respectively. This further validates that with the optimization
of the RASA algorithm and more containers collocated, we
achieve greater improvements in overall latency and error rate.

Furthermore, for the four individual service pairs as well
as for the overall cluster, the average absolute gap of WITH
RASA to ONLY COLLOCATED is less than 10% for both
latency and error rate. These results show that the affinity has
been sufficiently optimized.

VI. RELATED WORK

Resource allocation for clusters. Resource allocation for
clusters has been studied extensively in the past years. Most
of the previous research focuses on heuristic algorithms [50]–
[59]. An example is Eigen [59], which proposes a hierarchical
resource management system and three resource optimization
algorithms based on heuristics to improve resource allocation
ratio without hurting resource availability.

More recently, adopting solvers in resource allocation
gained popularity due to its capability of producing high-
quality solutions [10]–[12], [23], [60]–[63]. [10] uses MIP
to model the scheduling of containers for long-running ap-
plications and adopt an ILP-based solver to solve the MIP.
[12] studies the stochastic bin packing problem derived from
container scheduling, where they reformulate the problem and
employ a solver-based cutting stock approach. The most recent
work [64] studies the tenant placement problem in a Database-
as-a-Service cluster with a focus on minimizing the probability
of failovers. The authors proposed mathematical programming
models to address this problem and utilized solvers to solve it.
The results demonstrate significant advantages of this approach
over previous state-of-the-arts. Due to the poor efficiency of
solvers, only a small portion of solver-based research focuses
on large-scale clusters, and they are often equipped with some
acceleration techniques to meet the efficiency requirements.
For instance, RAS [11] uses MIP to model the capacity reser-
vation problem of large-scale clusters. Multi-phase solving and
variable aggregation techniques are applied to meet the SLO of

10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5

Runtime (s)

0

20

40

60

80

To
ta

l G
ai

ne
d

A
ffi

ni
ty

 (%
)

Better

(a) M1

50 75 100 125 150 175 200

Runtime (s)

0

20

40

60

80

To
ta

l G
ai

ne
d

A
ffi

ni
ty

 (%
)

(b) M2

0 20 40 60 80

Runtime (s)

0

20

40

60

80

To
ta

l G
ai

ne
d

A
ffi

ni
ty

 (%
)

(c) M3

30 40 50 60 70 80 90 100

Runtime (s)

0

20

40

60

80

To
ta

l G
ai

ne
d

A
ffi

ni
ty

 (%
)

(d) M4

POP K8s+ ApplSci19 RASA

Fig. 10: The optimization quality (concerning total gained affinity) under different runtimes.

18:00 21:00 00:00 03:00 06:00 09:00 12:00 15:00 18:00
Time

0.6

0.8

1.0

N
or

m
al

iz
ed

 L
at

en
cy

(a)

18:00 21:00 00:00 03:00 06:00 09:00 12:00 15:00 18:00
Time

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 L
at

en
cy

(b)

18:00 21:00 00:00 03:00 06:00 09:00 12:00 15:00 18:00
Time

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 L
at

en
cy

(c)

18:00 21:00 00:00 03:00 06:00 09:00 12:00 15:00 18:00
Time

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 L
at

en
cy

(d)

With RASA Without RASA Only Collocated

Fig. 11: Comparison of (normalized) end-to-end latency for four critical service pairs in production.

18:00 21:00 00:00 03:00 06:00 09:00 12:00 15:00 18:00
Time

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 E
rr

or
 ra

te

(a)

18:00 21:00 00:00 03:00 06:00 09:00 12:00 15:00 18:00
Time

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 E
rr

or
 ra

te

(b)

18:00 21:00 00:00 03:00 06:00 09:00 12:00 15:00 18:00
Time

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 E
rr

or
 ra

te

(c)

18:00 21:00 00:00 03:00 06:00 09:00 12:00 15:00 18:00
Time

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 E
rr

or
 ra

te

(d)

With RASA Without RASA Only Collocated

Fig. 12: Comparison of (normalized) request error rate for four critical service pairs in production.

18:00 21:00 00:00 03:00 06:00 09:00 12:00 15:00 18:00
Time

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 L
at

en
cy

Without RASA
Only Collocated
With RASA

18:00 21:00 00:00 03:00 06:00 09:00 12:00 15:00 18:00
Time

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 E
rr

or
 ra

te

Without RASA
Only Collocated
With RASA

Fig. 13: Comparison of weighted end-to-end latency and error rate for considered services in production.

solving within one hour. POP [23] proposes a general solution
for granular resource allocation problems that can produce
high-quality solutions efficiently.
Resource allocation with service affinity. Previous works
on service affinity in the cloud often refer to collocating the
containers of services or virtual machines to the same machine
or the same group of machines to minimize cross-group
network communication. For example, as [65] studies the
virtual machine placement problem and [11] studies capacity
reservation problem in the cloud, they both take reducing
the cross-datacenter traffic into account. Moreover, [10], [13],
[46], [66] study the container scheduling, where they instead
consider minimizing the inter-machine traffic between con-
tainers. Besides that, a popular container orchestration system,
Kubernetes, also provides an affinity feature [14], [67], which
allows the developer to customize their affinity requirements.

VII. CONCLUSION

Service affinity can greatly improve stability and enhance
system performance. However, such a topic with tremendous
business and environmental impact remains largely understud-
ied. To fill this gap, we present a formulation of this problem
as Resource Allocation with Service Affinity (RASA).

On top of it, we propose a novel approach that utilizes
a multi-stage partitioning technique to divide a given task
into several subproblems. With a GCN classifier, each sub-
problem, based on its scale and impact on the objective, is
assigned to be solved by an algorithm from the candidate
pool. Notably, we show that exact algorithms only need to
be applied to a small fraction of services with top affinities
to guarantee asymptotic optimality. We further propose a
heuristic algorithm to compute a migration path that can be
directly executed, transitioning to the new placement where
service affinity is well optimized. Experimental results show
that our algorithm achieves both quality and efficiency on real
traces, and the successful large-scale production deployment
shows that our solution significantly improves stability and
service performance. With the trend of moving data systems
to containers, our solution can improve the performances of
these data systems.

In general, adopting solvers for large-scale problems is rare
due to efficiency concerns, despite their enormous potential.
In future works, we aim to explore more high-quality-high-
efficiency solver-based algorithms in databases, cloud com-
puting, and distributed systems.

REFERENCES

[1] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno,
J. Hu, B. Ritchken, B. Jackson, K. Hu, M. Pancholi, Y. He, B. Clancy,
C. Colen, F. Wen, C. Leung, S. Wang, L. Zaruvinsky, M. Espinosa,
R. Lin, Z. Liu, J. Padilla, and C. Delimitrou, “An open-source benchmark
suite for microservices and their hardware-software implications for
cloud & edge systems,” in ASPLOS. ACM, 2019, pp. 3–18.

[2] W. Hasselbring and G. Steinacker, “Microservice architectures for scala-
bility, agility and reliability in e-commerce,” in ICSA Workshops. IEEE
Computer Society, 2017, pp. 243–246.

[3] H. Aragon, S. Braganza, E. F. Boza, J. Parrales, and C. L. Abad,
“Workload characterization of a software-as-a-service web application
implemented with a microservices architecture,” in WWW (Companion
Volume). ACM, 2019, pp. 746–750.

[4] L. Baresi and M. Garriga, “Microservices: The evolution and extinction
of web services?” in Microservices, Science and Engineering. Springer,
2020, pp. 3–28.

[5] “DOCKER: Persist the db,” https://docs.docker.com/get-started/05\
persisting\ data, 2024.

[6] “KUBERNETES: Persistent volumes,” https://kubernetes.io/docs/
concepts/storage/persistent-volumes, 2024.

[7] “AWS: Amazon memorydb for redis,” https://aws.amazon.com/cn/
memorydb/, 2024.

[8] “REDIS: Run redis stack on docker,” https://redis.io/docs/stack/
get-started/install/docker, 2024.

[9] “APACHE KAFKA: Quick start - docker,” https://developer.confluent.io/
quickstart/kafka-docker, 2024.

[10] P. Garefalakis, K. Karanasos, P. R. Pietzuch, A. Suresh, and S. Rao,
“Medea: Scheduling of long running applications in shared production
clusters,” in EuroSys. ACM, 2018, pp. 4:1–4:13.

[11] A. Newell, D. Skarlatos, J. Fan, P. Kumar, M. Khutornenko, M. Pundir,
Y. Zhang, M. Zhang, Y. Liu, L. Le, B. Daugherty, A. Samudra, P. Baid,
J. Kneeland, I. Kabiljo, D. Shchukin, A. Rodrigues, S. Michelson,
B. Christensen, K. Veeraraghavan, and C. Tang, “RAS: continuously
optimized region-wide datacenter resource allocation,” in SOSP. ACM,
2021, pp. 505–520.

[12] J. Yan, Y. Lu, L. Chen, S. Qin, Y. Fang, Q. Lin, T. Moscibroda,
S. Rajmohan, and D. Zhang, “Solving the batch stochastic bin packing
problem in cloud: A chance-constrained optimization approach,” in
KDD. ACM, 2022, pp. 2169–2179.

[13] C. Mommessin, R. Yang, N. V. Shakhlevich, X. Sun, S. Kumar,
J. Xiao, and J. Xu, “Affinity-aware resource provisioning for long-
running applications in shared clusters,” CoRR, vol. abs/2208.12738,
2022.

[14] “KUBERNETES: Assigning pods to nodes,” https://kubernetes.io/docs/
concepts/scheduling-eviction/assign-pod-node, 2024.

[15] S. Sudevalayam and P. Kulkarni, “Affinity-aware modeling of cpu
usage for provisioning virtualized applications,” in 2011 IEEE 4th
International Conference on Cloud Computing, 2011, pp. 139–146.

[16] J. Sonnek, J. Greensky, R. Reutiman, and A. Chandra, “Starling:
Minimizing communication overhead in virtualized computing platforms
using decentralized affinity-aware migration,” in 2010 39th International
Conference on Parallel Processing, 2010, pp. 228–237.

[17] “Service-affinity-scheduling,” https://github.com/bytedance/
Service-Affinity-Scheduling, 2024.

[18] “Supplementary materials - resource allocation with service affinity
in large-scale cloud envoronments,” https://github.com/bytedance/
Service-Affinity-Scheduling/blob/main/supplementary-materials/
supplementary-materials.pdf, 2024.

[19] “SCIP: Solving constraint integer programs,” https://www.scipopt.org/,
2024.

[20] “Branch and cut in cplex,” https://www.ibm.com/docs/en/icos/12.10.0?
topic=concepts-branch-cut-in-cplex, 2024.

[21] A. Basu, M. Conforti, M. D. Summa, and H. Jiang, “Complexity of
branch-and-bound and cutting planes in mixed-integer optimization -
II,” Comb., vol. 42, no. 6, pp. 971–996, 2022.

[22] J. E. Mitchell, “Integer programming: Branch and cut algorithms,” in
Encyclopedia of Optimization. Springer, 2009, pp. 1643–1650.

[23] D. Narayanan, F. Kazhamiaka, F. Abuzaid, P. Kraft, A. Agrawal,
S. Kandula, S. P. Boyd, and M. Zaharia, “Solving large-scale granular
resource allocation problems efficiently with POP,” in SOSP. ACM,
2021, pp. 521–537.

[24] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein, “Distributed graphlab: A framework for machine learning
in the cloud,” Proc. VLDB Endow., vol. 5, no. 8, pp. 716–727, 2012.

[25] F. Bourse, M. Lelarge, and M. Vojnovic, “Balanced graph edge parti-
tion,” in KDD. ACM, 2014, pp. 1456–1465.

[26] S. Papadimitriou, J. Sun, C. Faloutsos, and P. S. Yu, “Hierarchical,
parameter-free community discovery,” in ECML/PKDD (2), ser. Lecture
Notes in Computer Science, vol. 5212. Springer, 2008, pp. 170–187.

[27] R. Mayer and H. Jacobsen, “Hybrid edge partitioner: Partitioning large
power-law graphs under memory constraints,” in SIGMOD Conference.
ACM, 2021, pp. 1289–1302.

[28] Z. Wei, X. He, X. Xiao, S. Wang, Y. Liu, X. Du, and J. Wen, “Prsim:
Sublinear time simrank computation on large power-law graphs,” in
SIGMOD Conference. ACM, 2019, pp. 1042–1059.

[29] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins, and
E. Upfal, “Random graph models for the web graph,” in FOCS. IEEE
Computer Society, 2000, pp. 57–65.

[30] L. A.Adamic and B. A.Huberman, “The nature of markets in the world
wide web,” Quarterly Journal of Electronic Commerce, vol. 1, no. 1,
pp. 5–12, 2000.

[31] M. E. Newman, “Power laws, pareto distributions and zipf’s law,”
Contemporary physics, vol. 46, no. 5, pp. 323–351, 2005.

[32] “GUROBI: Gurobi optimizer reference manual,” https://www.gurobi.
com, 2024.

[33] “GOOGLE OR-TOOLS,” https://developers.google.com/optimization,
2024.

[34] P. Laborie, J. Rogerie, P. Shaw, and P. Vilı́m, “IBM ILOG CP optimizer
for scheduling - 20+ years of scheduling with constraints at IBM/ILOG,”
Constraints An Int. J., vol. 23, no. 2, pp. 210–250, 2018.

[35] W. E. Hart, J. Watson, and D. L. Woodruff, “Pyomo: Modeling and
solving mathematical programs in python,” Math. Program. Comput.,
vol. 3, no. 3, pp. 219–260, 2011.

[36] G. L. Nemhauser, M. W. P. Savelsbergh, and G. Sigismondi, “Minto,
a mixed integer optimizer,” Oper. Res. Lett., vol. 15, no. 1, pp. 47–58,
1994.

[37] M. E. Lübbecke and J. Desrosiers, “Selected topics in column genera-
tion,” Oper. Res., vol. 53, no. 6, pp. 1007–1023, 2005.

[38] K. Lin, M. Ehrgott, and A. Raith, “Integrating column generation in a
method to compute a discrete representation of the non-dominated set of
multi-objective linear programmes,” 4OR, vol. 15, no. 4, pp. 331–357,
2017.

[39] H. Dyckhoff, “A new linear programming approach to the cutting stock
problem,” Oper. Res., vol. 29, no. 6, pp. 1092–1104, 1981.

[40] J. Gondzio, P. González-Brevis, and P. A. Munari, “New developments
in the primal-dual column generation technique,” Eur. J. Oper. Res., vol.
224, no. 1, pp. 41–51, 2013.

[41] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh,
and P. H. Vance, “Branch-and-price: Column generation for solving huge
integer programs,” Oper. Res., vol. 46, no. 3, pp. 316–329, 1998.

[42] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” in ICLR. OpenReview.net, 2019.

[43] Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A survey,”
IEEE Trans. Knowl. Data Eng., vol. 34, no. 1, pp. 249–270, 2022.

[44] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in ICLR (Poster). OpenReview.net, 2017.

[45] J. B. Lee, R. A. Rossi, and X. Kong, “Graph classification using
structural attention,” in KDD. ACM, 2018, pp. 1666–1674.

[46] Y. Hu, C. de Laat, and Z. Zhao, “Optimizing service placement for
microservice architecture in clouds,” Applied Sciences, vol. 9, no. 21, p.
4663, 2019.

[47] P. Sanders and C. Schulz, “Think locally, Act globally: Highly balanced
graph partitioning,” in Proceedings of the 12th International Symposium
on Experimental Algorithms (SEA’13), ser. LNCS, vol. 7933. Springer,
2013, pp. 164–175.

[48] S. Schlag, C. Schulz, D. Seemaier, and D. Strash, “Scalable edge parti-
tioning,” in Proceedings of the 21th Workshop on Algorithm Engineering
and Experimentation (ALENEX). SIAM, 2019, pp. 211–225.

[49] M. Kubat, “Neural networks: A comprehensive foundation by simon
haykin, macmillan, 1994, ISBN 0-02-352781-7,” Knowl. Eng. Rev.,
vol. 13, no. 4, pp. 409–412, 1999.

[50] W. Khallouli and J. Huang, “Cluster resource scheduling in cloud
computing: literature review and research challenges,” J. Supercomput.,
vol. 78, no. 5, pp. 6898–6943, 2022.

[51] C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware scheduling for
heterogeneous datacenters,” in ASPLOS. ACM, 2013, pp. 77–88.

[52] A. Rahimikhanghah, M. Tajkey, B. Rezazadeh, and A. M. Rahmani,
“Resource scheduling methods in cloud and fog computing environ-
ments: A systematic literature review,” Clust. Comput., vol. 25, no. 2,
pp. 911–945, 2022.

[53] H. M. Demoulin, J. Fried, I. Pedisich, M. Kogias, B. T. Loo, L. T. X.
Phan, and I. Zhang, “When idling is ideal: Optimizing tail-latency for
heavy-tailed datacenter workloads with perséphone,” in SOSP. ACM,
2021, pp. 621–637.

[54] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow: dis-
tributed, low latency scheduling,” in SOSP. ACM, 2013, pp. 69–84.

[55] S. Venkataraman, A. Panda, G. Ananthanarayanan, M. J. Franklin, and
I. Stoica, “The power of choice in data-aware cluster scheduling,” in
OSDI. USENIX Association, 2014, pp. 301–316.

[56] O. Hadary, L. Marshall, I. Menache, A. Pan, E. E. Greeff, D. Dion,
S. Dorminey, S. Joshi, Y. Chen, M. Russinovich, and T. Moscibroda,
“Protean: VM allocation service at scale,” in OSDI. USENIX Associ-
ation, 2020, pp. 845–861.

[57] S. A. Jyothi, C. Curino, I. Menache, S. M. Narayanamurthy, A. Tu-
manov, J. Yaniv, R. Mavlyutov, I. Goiri, S. Krishnan, J. Kulkarni, and
S. Rao, “Morpheus: Towards automated slos for enterprise clusters,” in
OSDI. USENIX Association, 2016, pp. 117–134.

[58] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu, and
L. Zhou, “Apollo: Scalable and coordinated scheduling for cloud-scale
computing,” in OSDI. USENIX Association, 2014, pp. 285–300.

[59] J. Y. Li, J. Zhang, W. Zhou, Y. Liu, S. Zhang, Z. Xue,
D. Xu, H. Fan, F. Zhou, and F. Li, “Eigen: End-to-end resource
optimization for large-scale databases on the cloud,” Proc. VLDB
Endow., vol. 16, no. 12, p. 3795–3807, sep 2023. [Online]. Available:
https://doi.org/10.14778/3611540.3611565

[60] A. Tumanov, J. Cipar, G. R. Ganger, and M. A. Kozuch, “Alsched:
algebraic scheduling of mixed workloads in heterogeneous clouds,” in
SoCC. ACM, 2012, p. 25.

[61] L. Suresh, J. Loff, F. Kalim, S. A. Jyothi, N. Narodytska, L. Ryzhyk,
S. Gamage, B. Oki, P. Jain, and M. Gasch, “Building scalable and
flexible cluster managers using declarative programming,” in OSDI.
USENIX Association, 2020, pp. 827–844.

[62] C. Curino, D. E. Difallah, C. Douglas, S. Krishnan, R. Ramakrishnan,
and S. Rao, “Reservation-based scheduling: If you’re late don’t blame
us!” in SoCC. ACM, 2014, pp. 2:1–2:14.

[63] A. Tumanov, T. Zhu, J. W. Park, M. A. Kozuch, M. Harchol-Balter,
and G. R. Ganger, “Tetrisched: Global rescheduling with adaptive plan-
ahead in dynamic heterogeneous clusters,” in EuroSys. ACM, 2016,
pp. 35:1–35:16.

[64] A. C. König, Y. Shan, K. Newatia, L. Marshall, and V. Narasayya,
“Solver-in-the-loop cluster resource management for database-as-a-
service,” Proc. VLDB Endow., vol. 16, no. 13, pp. 4254–4267, 2023.

[65] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of
data center networks with traffic-aware virtual machine placement,” in
INFOCOM. IEEE, 2010, pp. 1154–1162.

[66] Z. Wu, Y. Deng, H. Feng, Y. Zhou, G. Min, and Z. Zhang, “Blender: A
container placement strategy by leveraging zipf-like distribution within
containerized data centers,” IEEE Transactions on Network and Service
Management, 2021.

[67] “KUBERNETES: Production-grade container orchestration,” https://
kubernetes.io, 2024.

